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Abstract 

Experiments were conducted at NASA Ames Research Center t o  define multitasking 
software requirements for multiple-instruction, multiple-data stream (MIMD) computer 
architectures. The focus was on specifying solutions for algorithms in the field of computa- 
tional fluid dynamics (CFD). The program objectives were to  allow researchers t o  .produce 
useable parallel application software as soon as possible after acquiring MlMD computer 
equipment, t o  provide researchers with an easy-to-learn and easy-to-use parallel software 
language which could be implemented on several different MIMD machines, and to  enable 
researchers t o  list preferred design specifications for future MIMD computer architectures. 
Analysis of C F D  algorithms indicated that  extensions of an existing programming language, 
that  are adaptable to  new computer architectures, provided the best solution t o  meeting 
program objectives. The CoFortran Language was written in response to these objectives 
and to  provide researchers a means to experiment with parallel software solutions to  CFD 
algorithms on machines with parallel architectures. 

1. Introduction 

This paper reviews the progress of concurrent computer language research at NASA 
Ames Research Center, describes the design of FORTRAN concurrent constructs for parallel 
processing, and presents the status of the CoFortran precompiler. Studies of multitasking 
software requirements for multiple-instruction, multiple-data stream (MIMD) architecture 
computers have focused on specifying solutions for specific Ames’s algorithms in the com- 
putational fluid dynamics (CFD) area. The discussion is limited t o  conventional concurrent 
processing as opposed to  the data  flow and systolic array approaches that are also under 
study at the Center. 

The Computational Research Branch is assessing the use of parallel processing capa- 
bilities on MIMD machines at Ames. Analysis showed that CFD algorithms used at Ames 
could be modified for parallel processing. Representative CFD programs were then rewritten 
using machine-dependent features to implement parallel processing. Parallel implementa- 
tion of these programs achieved improved efficiency. Studies of concurrent programming 
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languages were then undertaken to  make the process of converting programs easier and to 
make the programs portable. Since CFD programs are written in FORTRAN for portzbility 
and researchers are familiar with the language, extensions for parallel processing (CoFor- 
tran) were added to it. The CoFortran language provides a means to experiment with 
parallel software solutions to  CFD algorithms on machines with parallel architectures. 

2. CFD algorithms and parallel solutions 

To determine how CFD problems could take advantage of MIMD architectures, three 
representative, sequential CFD programs were rewritten. They were implemented and 
tested on a Digital Equipment Corporation (DEC), dual VAX-11/780 configuration con- 
nected with a 256KB (MA780) shared memory, as well as on a Cray X-MP/22 and a Cray 
X-MP/48. The rewriting required the use of complicated, manufacturer-provided, sys- 
tem programming statements for implementing concurrency and accessing shared memory. 
Since these system statements are machine dependent, a separate version of each program 
was needed for each machine. 

In general, the CFD problems a t  Ames use finite difference algorithms or spectral 
algorithms (Fig. 1). Because approximate factorization is used, the algorithms can be 
divided among the processors, such that  each processor does a fixed portion of the work. 
The maximum number of processors that  can be kept busy is determined by the size and 
number of the dimensions of the data  array. The names of the specific programs used here 
are TWING 111, [2], AIR3D [3],  and the Rogallo Large Eddy Simulation (LES) [4]. TWING 
is a conservative full-potential program that solves an implicit, approximate-factorization 
algorithm. AIR3D is a Reynolds-averaged Navier-Stokes program that solves an implicit, 
approximate-factorization algorithm. LES models isotropic, homogeneous turbulence using 
spectral methods and using a Runga-Kutta algorithm to resolve time. 

A cutaway of a finite difference mesh around a wing-and-body geometry illustrates 
how data  processing could be divided into parallel packages (Fig. 2) .  Each line in the three 
dimensions i (the mesh spokes that extend out from the wing), j (the lines from the body to 
the wing tip and then the freestream boundary), and k (the lines around the surface of the 
wing). represents a group of calculations dependent on only one variable in each respective 
direction. Therefore, each line represents a vector or a “pencil” of calculations. The pencils 
can be processed concurrently on separate physical processors. Since machines were not 
available with the requisite hundreds of processors, the pencils are divided in groups among 
the available processors. For example, on a two-processor machine the pencil sets are 
divided in half, first the inboard half and the outboard half of the wing are concurrently 
computed. Then the top half and the bottom half of the wing are concurrently computed. 
Finally, two halves of the mesh spokes are concurrently computed. This sequence is repeated 
for each iteration. The majority of a C F D  program’s CPU time is spent performing this 
sequence. This application benefits greatly from parallel processing because only a relatively 
small portion of the CPU time is spent handling boundary conditions and other sequential 
processing. 

The three CFD programs display the same pattern of computation (Fig. 3). The 
algorithm operations in the computational space could be separated into three sets of pencils 
describing the z, y, and z computational directions. Each pencil in a set is independent 
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of the other pencils in the set. Thus, the x-direction set of pencils, as well as the y- 
direction and z-direction sets can be processed in parallel. However, calculation of all the 
x-direction pencils must be completed before the y-direction pencils are calculated and the 
y- and z-direction pencils must be similarly synchronized. 

The number of pencils computed on each processor depends on the number of pro- 
cessors available. The number of processors which could be assigned work ranges from 
two up to  the maximum number of pencils. Typical CFD programs use a grid size of 
100 x 100 x 100. Assigning one pencil to one machine may not be very efficient because 
of the system overhead. Once again, the available machine for these experiments had two 
processors; therefore, the groups of pencils were divided in half. For example, in a 4 x 4 x 4 
system (Fig. 3) the odd pencils, 1 and 3, were put on processor 1 and the even pencils, 2 and 
4 ,  were put, on processor 2. Thus, it was possible t o  divide the large number of calculations 
on the data  into balanced partitions (Fig. 4).  

The results of the experiments using system-specific implementations indicated that 
multiprocessing improves turnaround on C F D  jobs (Table 1) .  In this two-processor system, 
the optimum speedup factor is 2.0. The worst case, TWING, reached 78% of optimum 
speedup because it requires more synchronization than the other methods. AIR3D for a 
small number of iterations reached 92% of optimum speedup. The best case, LES, reached 
99% of optimum speedup. These results are not from optimized code but from converted 
sequential code; therefore, it is anticipated that when programs are optimized for MIMD 
capabilities, the turnaround improvement will be better. 

From these experiments, it was concluded that C F D  problems could take advantage 
of MIMD architectures. The three examples showed that a significant improvement could 
be achieved by running portions of the programs in parallel. However, the process used 
in the examples is not practical for general use because system service calls are not easy 
for researchers t o  use and are further complicated by machine-dependent features. Also, 
with the period between migrations to newer machines decreasing, time and resources are 
usually not available to  convert the old code with each migration. 

Machine-independent concurrent constructs have been designed specifically for com- 
putational physics computer programs using the FORTRAN language. The next step is t o  
implement CFD algorithms using these tools. These two steps are an interrelated process; 
experience with the application will help refine the concurrent tools. 

3. Virtual MIMD model and implementation 

Since MIMD machines were available at Ames and since the CFD problems could take 
advantage of MIMD capabilities, the decision was made to  design a portable language to  
implement this capability. The first step in the language development created an abstract 
definition of the two available machines. From this model, four important characteristics 
of the machines were defined: multiple processors, hardware for synchronization, shared 
and local memory, and interprocessor communication mechanisms. The model consists of 
an arbitrary number of homogeneous logical processors. These are traditional processors 
that  are run independently. In addition, the number of processors available varies with 
any particular machine. Thus, the model does not specify the number of processors. Syn- 
chronization is needed between the z, y, and z axes within each iteration. An event-flag 
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mechanism allows synchronization of executing processes. The virtual model has a large 
global rrierriory shared by all of the processors arid has a local rnernory for each processor. 
This model is advantageous for C F D  problems requiring large data  arrays which are ac- 
cessed in varying directions with each iteration. However,this may change when there are a 
large number of processors contending for one memory. A communication mechanism exists 
which informs each logical processor of its own identity, expressed as an integer from 1 t o  
the maximum number of processors. Typically the processor uses this number to  determine 
on which portion of the data  to work. 

The model is extended to  include the notion of logical processors, which provide all 
the functionality of physical processors, but which may be mapped many-to-one onto the 
physical processors (with operating system support) for debugging or simulation purposes. 

The synchronization ability to  start a multiple number of parallel processes at once and 
to  wait for the same number of parallel processes to  finish is not currently implemented at 
the hardware level. Whether this capability is needed at the primitive concurrent construct 
level to achieve maximum efficiency needs to  be studied. There are tradeoffs among the 
user-level program, the operating system software, and the  machine hardware synchronizing 
the correct number of parallel processes. The user level program has the capability to  
do the counting. With a small number of processors, we are achieving excellent timing 
improvements; however, this may decrease for a larger number of processors. 

Since nearly identical calculations are being done on each processor on different parts 
of the data,  the scheduling algorithm, which divides the work up evenly among the number 
of processors, works quite well for a small number of processors. An issue for further 
experimentation will be to determine how to best balance the load between processors. 
Perhaps a method of having each processor request a portion of work would work equally 
as well or better in some circumstances. This permits different scheduling algorithms to be 
tried for different numbers of processors. 

Since the currently available MIMD computers have a relatively small number of pro- 
cessors, they are often considered experimental prototypes of future MIMD computer sys- 
tems. Methods are being developed to  determine how algorithms can be broken up to  run 
in parallel. In addition, methods should be developed to determine the optimum number 
of processors for a particular algorithm. 

Finally, programs need to be designed. There is a need for timing clocks that reflect 
the CPU and real-time activity of each process or task, as well as the CPU and real-time 
activity of each physical processor. Additional system-support tools for debugging, such as 
program trace maps, would also be helpful. 

4. Language requirements 

A number of steps were followed to  determine the types of concurrent constructs needed 
to  solve CFD algorithms in parallel. Language requirements were derived from the exper- 
imental test cases and the virtual machine model. The language requires procedural con- 
currency statements to specify the portion of the code which is to run in parallel. It needs 
synchronization statements t o  start  a number of processes in parallel and to  wait until the 
same number of processes are completed. There must be data  declaration statements t o  
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specify which data  are shared among processes running in parallel and a communication 
mechanism to  tell each parallel logical processor which portion of the data  to  process. 

User requirements were also derived from the experimental test cases. The parallel 
capability should be easy to  learn and easy to use. Since new hardware is arriving faster 
than software can be written for it,  it would be best if once an algorithm is decomposed 
into a parallel solution, only one program need be written to  implement the solution on a 
variety of MIMD computers. 

A number of developed procedural concurrent-programming languages were considered 
for possible solutions to the language requirements. These were Concurrent Pascal [5] 161, 
Path Pascal [7],  and Ada IS] [9]. Parallel languages implement concurrency over a spectrum 
of levels / I O ] .  This spectrum ranges from the operating system level t o  the statement level, 
then to  the unit level, and on up t o  the program level. These procedural languages fit within 
the statement and unit levels of the spectrum. They implement parallel processing with 
subroutines or procedures. Concurrent Pascal ensured reproducible behavior with monitors 
- procedures that encapsulate a resource definition and operations that manipulate the  
resource [ 111 1121. However, since the language was not implemented on MIMD-architecture 
computers, but instead simulated on sequential computers for parallel architecture research, 
it was not available for our MIMD machines. It was not practical t o  use this language as 
it would have invo!ved writing a compiler for each machine, designing operating syst,ern 
interfaces, and converting all the previous application programs. Path Pascal allowed state- 
ments of task execution and had monitor-defined operations. However, it was designed 
primarily for resource management. Path Pascal did not allow for resynchronization since 
it assumed once a task was started its completion time was unimportant. Ada offered task 
definition and “rendezvous” (synchronization) statements, but was designed for real-time 
process control systems. Ada was not available for MIMD-architecture machines. It did not 
consider starting multiple copies of the same program on homogeneous processors. Many of 
these types of languages were designed to solve the interactive-operating-system problem 
of throughput instead of the large-CPU-bound job problem of turnaround. 

5. Concurrent construct extensions to the FORTRAN language 

There are boundary conditions in CFD problems that  need to  be handled; hence, 
the parallel portion of the solution program has conditional statements. These conditional 
statements make the use of semiautomatic or do-loop multitasking languages awkward. 
However, it is easy to handle conditional cases in procedural parallel languages. 

To make reprogramming of existing software into parallel processing as efficient as 
possible for researchers and programmers, features of these procedural languages were used 
as enhancements t o  the FORTRAN language. The resulting CoFortran language provides 
a familiar programming environment, thus avoiding the apprehension and learning time 
involved with a new language. In the implementations to  date a monitor is used to ensure 
reproducible behavior as in Concurrent Pascal and Path Pascal. This monitor is not a sep- 
arate entity but one which is incorporated across all of the expanded concurrent constructs. 

CoFortran programs contain a combination of FORTRAN statements and new con- 
The parallel language issues are resolved by current programming extensions (Fig. 5). 



extending FORTRAN in the following areas (that closely match the characteristics of the 
MIMD model). 

1. C o n c u r r e n c y  Statements define which portions of the code can be run in parallel. 
CoFortran is a procedural parallel language; thus, the concurrency statements are like 
a sequential FORTRAN “SUBROUTINE” statement. 

2. Synchronizat ion Statements provide the ability for starting coprocesses and re- 
turning to sequential execution. These statements are like a sequential FORTRAN 
“CALL” statement. 

3. Data Passing Statements explain where da t a  reside. These statements are like 
sequential FORTRAN “COMMON” statements. CoFortran bases data  passing on a 
large shared memory. 

4. The Communica t ion  Mechanism provides the basis for the scheduling mechanism. 
A number is assigned to  each process, a value from 1 t o  the maximum number of 
processes. The number typically is used to  determine on which portion of the data to 
work. 

6. CoFortran Language Usage 

The researcher uses the CoFortran parallel constructs t o  map algorithms onto the 
MIMD machines. ( 1 )  The first step is t o  analyze the algorithm to  determine mathematical 
restrictions on partitioning of the problem. (2)  The second step is t o  identify portions of 
the code that must be executed sequentially and that require synchronization points. (3) 
The third step is t o  isolate tasks which can be run concurrently. (4) The fourth step is t o  
incorporate the CoFortran code for concurrent process control and data  management into 
the original program. (5) The final steps are to  execute the modified code and t o  analyze 
the performance. 

To build and execute a CoFortran concurrent program the procedure is as follows. 
First the modified code and a machine-dependent macro expansion set are run through the 
CoFortran precompiler. The generated code is then run through the FORTRAN compiler 
(Fig. 6). For each concurrent processing construct, the precompiler generates a combination 
of machine-specific parallel processing code and standard FORTRAN code. The use of 
macro expansion sets for the concurrent statements enables easy addition of new machine- 
dependent specifications. These features allow the precompiler t o  reside on a different 
machine than the one used to execute the application program. The FORTRAN generated 
by the precompiler is input to the FORTRAN compiler of the target machine. The resulting 
object files are then linked to  the appropriate run-time libraries and executed on the parallel 
machine. In addition, there can be several macro expansion sets for one parallel processing 
system. This feature may be used t o  test different scheduling, debugging, and timing 
strategies. 

Time sequences illustrate the means by which sequential-program solutions of CFD 
algorithms can be converted t o  concurrent program solutions (Fig. 7 ) .  Over time, a suitable 
multiprocessed program completes processing sooner than a sequential program. Each of 
the vertical lines represents a time period when code is executing on a logical processor. 
Depending on the hardware configuration, each of the logical processors may reside on a 
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separate physical processor. Since timesharing is possible and since the main process of C F D  
algorithm solutions is concerned with synchronization between parallel code and sequential 
code, the main process could, with minimal impact, share a physical processor with one of 
the parallel tasks. For clarity, the code running in parallel would be separated from the 
main program. 

Insertion of the concurrent constructs into their relative locations within the time- 
sequence figure illustrates how they fit in a CoFortran program (Fig. 8). The Share initial- 
ization statements are placed in the declaration section of the main CoFortran program. 
Next the CoInit concurrent-process-creation statements occur in the executable section of 
the main program. Since process-creation overhead is generally quite high, this implementa- 
tion brings the processes into existence only once prior to executing the processes in parallel. 
Then, within the main program, the CoStart statement is entered to  run parallel versions of 
the concurrent processes. After starting concurrent process X in parallel, the main program 
waits for the parallel pieces to  finish working on the data  in the 2 direction. Next, the main 
process issues the CoStart statement to run parallel versions of the coprocess, working on 
the data  in the y direction. The CoWait statement allows the main program t o  continue 
processing and then, at an  appropriate time, t o  explicitly wait until all the parallel tasks 
are finished. This explicit synchronization occurs prior t o  and after processing the data in 
the L direction. The main program loops back t o  repeat the sequence of processing the data  
in the z, y, and z’ directions for a number of time steps. Finally, the explicit CoStop and 
Release statements may occur in the main program if resources need to be released prior 
t o  job completion. The location of the constructs within each CoProcess program are also 
illustrated. The first statement is the CoProcess statement which delimits the beginning 
of the CoProcess code (as a FORTRAN “SUBROUTINE” statement delimits the begin- 
ning of the subroutine code). The appropriate Share initialization statements are placed in 
the declaration section of the CoFortran CoProcess program. Then an  optional section of 
initialization code in the CoProcess executable section is run at CoProcess creation time. 
The CoBegin and CoEnd statements delimit the parallel block of code which is run on each 
logical processor after each Cost art statement is issued. The underlying implementation 
uses the particular machine’s event flags for synchronization. Because the CoStart, CoW- 
ait ,  CoStop, CoBegin, and CoEnd statements are easier (machine-independent), clearer 
(easier t o  read), and safer (code already proven correct) t o  use than machine-dependent 
statements, the researcher need not be concerned with keeping track of event flags and 
corresponding synchronization logic. 

The CoFortran language uses the features of MIMD computer architectures. One 
copy of the CoProcess program resides on disk. Each CoProcess program is linked as 
a single executable program containing all the code for all processes. When the logical 
processes run, they execute each program’s statement, not in lockstep, but independently. 
In addition, because of conditional statements and data  dependent statements, each of the 
logical processors may not execute the same code. It is most efficient to have each of the 
logical processors correspond to a physical processor, but this is not necessary. 

Multitasking led to the requirement of a new type of common storage in the FORTRAN 
language. The CoProcess data  have two types of common data:  COMMON (local-process) 
and Shared (global) (Fig. 9). A CoProcess program may contain subroutines which may 
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declare variables in a shared memory area to  communicate information between the sub- 
routines. Thus, when the parallel processes of t,he Coproress are created variables placed 
in a global memory will be seen not only between subroutines, but also between all parallel 
processes. Thus, a local-process memory area is needed which is seen only by subroutines 
of each created parallel process of a CoProcess, and a global memory area is needed which 
is visible to all processes. This means of communication between subroutines, instead of 
parameter passing, may be necessary if large quantities of data  are shared in order t o  elimi- 
nate overhead caused by large data  transfers. Since the multiple VAX system has machines 
with separate local memory, each process had local-process shared memory. On machines 
with one large shared memory, such as the Cray X-MP, a special provision was needed 
since all of the memory was in one location and only one kind of common memory was ini- 
tially provided in FORTRAN. As a result, Cray implemented the capability of expressing 
a difference between global variables and local-process variables. 

7. Comparison with machine-dependent multiprocessing statements 

The CoFortran constructs simplify design of parallel algorithm solutions. For example, 
on the VAX system, one statement would replace the complicated system service calls 
(Fig. 10) [13] [14] and on the Cray X-MP, one CoWait statement would replace explicit 
event synchronization statements (Fig. 11) [ 151. Having a monitor which is already proven 
correct frees the researcher t o  concentrate on the algorithm solution and refinement. 

The implemented solution for the expansion of the constructs on the Cray X-MP uses 
the Task and Event primitives (Fig. 12). The CoInit construct provides information to  set 
up the Task array tables and the event flags, and to create the tasks. The CoStart signals 
the events to start the tasks executing the parallel code. The CoWait waits for each task 
to finish and then resets the event flags and posts the signal for each task to  wait for the 
start signal. Thus, the researcher is not involved with the detailed logic of flags, events, or 
synchronization. 

A simpler programming method uses only Cray TASK statevents  (Fig. 13). One Large 
Eddy-code implementation is done in this manner. Future experimentation will indicate 
which methods are most efficient for various CFD algorithms. 

We will continue to research Ames’s CFD algorithms on prototype systems and develop 
experimental test cases. We will disseminate the results t o  aid in the future standardization 
of multitasking constructs. Thus the next steps in this project are to  test the prototype 
concurrent-language tools on the VAX quad processors and on the Cray X-MP/48 in order 
t o  make timing measures and to  obtain feedback on ease of use from researchers at Ames. 
The concurrent-language tools will then be made available for testing on future MIMD 
supercomputers. 

8. Implementation 

A CoFortran language interface was written for the two MIMD machines available at 
NASA Ames - the Cray X-MP/48, and the DEC Quad VAX-l1/785s with 4MB (MA780) 
shared memory. The interface consists of CoFortran macro expansion files and the CoFor- 
tran precompiler. The initial version of the concurrent FORTRAN precompiler is currently 
being tested. A macro expansion set of files for the Cray X-MP machine is also being 
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tested. A macro expansion set of files and a concurrent monitor system has been written 
for the Quad VAX with shared memory and is available for debug testing. 

Samples are given in Figure 14 which illustrate how the CoFortran language works 
including a portion of the sequential FORTRAN program (Fig. 14a) and a portion of the 
concurrent CoFortran version of the program (Fig. 14b). Along with the program sections 
are the corresponding portions of the output file generated by the CoFortran precompiler 
(Fig. 14c). The output snapshots illustrate the underlying implementation in the macro 
expansions. 

In these samples, the scheduling strategy is to partition the data  among the processors 
based on a number indicating the part of the data  on which to perform calculations. The 
variable nps denotes the number of logical processors available and the variable pid denotes 
the processor identification number. The two variables are monitor variables which provide 
the basis for the scheduling strat,egy. As mentioned before, the monitor is incorporated 
across all of the macro expansion sets. The precompiler expands each of the CoFortran 
constructs based on a predefined, corresponding macro expansion file. 

Macro expansions of the CoFortran statements provide the capability to  rapidly expand 
to  new machines, since no precompiler code needs to  be changed. In addition, once a new 
macro expansion set is written for the new machine, all CoFortran programs can be run 
without being rewritten. 

An initial version of the CoFortran User’s Guide is available which contains detailed 
information on each of the CoFortran commands. This document also contains listings of the 
available macro expansion sets, additional sample programs, and details of system-specific 
consider at ions. 

9. Conclusions 

A CoFortran Language interface was written for the two MIMD machines available at 
NASA Ames - the Cray X-MP/48 and the Digital Equipment Corporation Quad VAX- 
11/785s with 4MB shared memory. The interface consists of CoFortran macro expansion 
files and the CoFortran precompiler. CoFortran provides a machine-independent resource 
for parallel processing researchers. Sequential programs can be converted to portable paral- 
lel programs using the high-level CoFortran language. I t  is hoped that for a small number 
of processors, these parallel programs may exceed a speedup of 75% of n for an n-processor 
system over a single-processor system. Issues for further language study include additional 
capabilities a t  the primitive concurrent-construct level, load balancing among processors, 
varying scheduling algorithms, and implementation of debugging tools. Future experiments 
will aid in obtaining insight into these issues and in further development of parallel process- 
ing capabilities. 
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TABLE 1 
RESULT OBTAINED ON A DUAL VAX 11/780 WITH SHARED MEMORY 

SPEEDUP = 1 PROCESSOR CPU TIME/2 PROCESSOR CPU TIME 

CODE NO. ITERATIONS SPEEDUP 

TWING 3 1.27 
- 10 1.45 
- 30 1.54 
- 60 1.55 

AIR3D 15 1.85 
LARGE EDDY 1 SIMULATION 

5 
100 

1.80 
1.98 
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0 A GENERAL IMPLICIT FINITE-DIFFERENCE ALGORITHM 
CAN BE REPRESENTED AS 

Qn+l = L Q" 
Fxyz XYZ 

0 GENERAL SOLUTION METHOD FOR APPROXIMATE 
FACTORED ALGORITHMS 

FACTO R E D EQU AT I ON : 

F ~ F ~ F , Q " + ~  = L,,,~Q" 

WHERE Fxvz = FxFYFz + O(At2) (At  IS TIME STEP) 

Fig. 1. Types of algorithms being solved 
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WING - ROOT -VORTEX SHEET 

PHYSICAL 
COOR D I NATES 

COMPUTATIONAL 
COORDINATES 

Fig. 2. Cutaway of a finite-difference mesh around a wing 
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IN I TI AL I2 AT1 ON 

SEQUENTIAL 
COMPUTATION 

I 

CALC Y CALC Y o m .  

1ST PART 2ND PART 

CALCULATE: 
1ST PART OF X DATA 
2ND PART OF X DATA 

0 

nTH PART OF X DATA 

CALC Y 
nTH PART 

CALCULATE: 
1ST PART OF 2 DATA 
2ND PART OF 2 DATA 

0 
0 

nTH PART OF 2 DATA - 

I I N IT1 AL CAT1 ON 

nTH PART 

1 
1ST PART 2ND PART nTH PART 

SEQUENTIAL 
COMPU,TATION ] 

SEQ. CALC. 
AND WRITE 

EXIT J 

Fig. 4. Program flow: sequential vs. concurrent processing 
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> Concurrency 

CoProcess 
CoBegin 
CoEnd 

> Synchronization 

Colnit 
CoStart 
CoWait 
CoStop 

> Data Passing 

Share 
Release 

> Communication 

Process I dent if ication 

Fig. 5 .  Concurrent extensions to FORTRAN 
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SEQUENTIAL (1 PROCESSOR) 

- 

MAIN 

SEQUENTIAL 

CALCULATE X VALUES ON 
EACH OF 4 PROCESSORS IIJT] 

IIJ13 
llJIl 

1 1  

CALCULATE Y VALUES ON 
EACH OF 4 PROCESSORS 

!I 

CALCULATE 2 VALUES ON 
EACH OF 4 PROCESSORS 

SEQUENTIAL 

SEQUENTIAL CALCULATIONS 

! f  - -  

1 AND PRINT THE RESULTS 

IN I TI AL I ZATlON 

SEQUENTIAL 

CALCULATE X VALUES 

CALCULATE Y VALUES 

CALCULATE 2 VALUES 

THESE TIME SEQUENCE FIGURES SHOW THE MEANS 
BY WHICH CFD ALGORITHMS CAN BE PROGRAMMED 
SEQUENTIALLY AND CONCURRENTLY. THE 
CONCURRENT FIGURE ILLUSTRATES HOW A FOUR 
PROCESSOR SYSTEM WOULD OPERATE. THERE IS 
A SIGNIFICANT SPEEDUP IN WALL CLOCK TIME 

LARGE COMPARED TO THE SEQUENTIAL 
CALCULATION TIME OF THE PROGRAMS. 

SEQU E NT I AL 

SEQUENTIAL CALCULATIONS SINCE THE AMOUNT OF CALCULATION TIME IS 

AND PRINT THE RESULTS 

END 

Fig. 7 .  Time sequence of sequential and multiprocessed programs 
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MAIN SEQUENTIAL - 

- 

INIT. 

SEQ. 

CALC. X 
VALUES 

CALC. Y 
VALUES 

CALC. Z 
VALUES 

SEQ. 

SEQ. CALC. 
PRINT 

STOP 

MAIN MULTIPROCESSED (4 PROCESSORS) 

INITIALIZATION 
SHAREIDATAforXl . . . 
SHARE IDATAforZI . . . 
SHARE /DATAforY/ . . . 
COlNlT X 
COlNlT Y 
COlNlT Z 

SEQUENTIAL 
COSTART X (WAIT) 

COPROCESS X ---- - - 111-I INITIALIZATION 
SHARE /DATAforX/ . . . 
COBEGIN X 

1 2 3 4  process id (%pid) = 1, 2, 3, or 4 
CALCULATE ASSIGNED PORTION 
OF X VALUES 

I_- 
T COSTART Y (NOWAIT) 

COEND 

STOP _ _ _ _ _ _ _ _  --- 

COPROCESS Y ---- - - [ 111 LNlTlALlZATlON 
SHARE IDATAforYI . . . 
COBEGIN Y 

1 2 3 4  process id (%pid) = 1, 2, 3, or 4 
CALCULATE ASSIGNED PORTION - -- 

STOP - __-_------ 
COWAIT Y 

COPROCESS Z 

COBEGIN Z 
1 2 3 4  

14-1 COEND 

process id (%pid) = 1, 2, 3, or 4 
CALCULATE ASS I G N ED PORT ION 
OF Z VALUES 

STOP _------ ---- 

SEQUENTIAL 
7 

SEQUENTIAL CALCULATIONS AND PRINT THE RESULTS 

STOP 

Fig. 8. Program flow chart with concurrent construct locations indicated. 
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CONSTRUCT FORMAT: 

COPROCESS PASS7ODD 

STATEMENTS REPLACED BY THIS CONSTRUCT: 
~ 

ASSOCIATE WITH EVENT FLAG CLUSTER 
CALL ASC$F LAGS('SH RM EM0 : FLAGS', 65) 

GET PROCESS ID NUMBER 
CALL PROCESS$ID(PID) 

WAIT FOR FLAGS SET IN MAIN PROCESS 
ATST=SY !%$WAIT F (%VAL (P I D+79) ) 
IF (ATST .NE. 1) WRITE(6,18) ATST 
18 FORMAT('ATST STATUS=',8Z) 

CLEAR FLAGS 
ASST=SYS$C L R E F (%VAL (P I D+79) ) 
IF (ASST .NE. 1) WRITE(6,88) ASST 
88 FORMAT(' ASST STATUS=',82) 

Fig. 10. Comparison of construct and system service calls 
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CONSTRUCT FORMAT 

COWAIT(NAM E) 

I STATEMENTS REPLACED BY THIS CONSTRUCT 

DO 30 ID = 1,NMS 

DO 40 ID = 1,NMS 
30 EVWAIT( NAM E-EN D( I D)) 

EVC LEAR (NAM E-BGN ( ID)) 
EVC L EAR (N AM E-EN D ( I D) 1 

EV POST (N AM E -CNT ( I D 1) 40 

Fig. 11 .  Comparison of construct implemented on the Cray X-MP 
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PROGRAM SEQ 
DO 20 TIMESTEP = 1.10 

DO 30 I = 1,20 
X(TIMESTEP,I) = A * I 

30 CONTINUE 
20 CONTINUE 

PROGRAM PAR 
DO 20 TIMESTEP = 1.10 

COSTART XPA WAIT 4 
20 CONTINUE 

COPROCESS XPA XPARl 4 4 
COBEGIN XPA 

DO 30 I = (((20/nps) * (pid-1)) + 11, (20/nps)*pid 
X(TIMESTEP.1) = A * I 

30 CONTINUE 
COEND XPA 

Fig. 14. Samples which illustrate how the CoFortran language works 

(a) Sequential FORTRAN version of program 

(b) Parallel CoFortran version of program 
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PROGRAM PAR 
DO 20 TIMESTEP = 1.10 

CM COSTART XPA WAIT 4 
CM MMMMMMMMM CRAY MMMM COS MMMM MACRO MMM 09-24-85 MMMMM COSTART 
CM Cost art $1 $ $2$ $3$ $4$ 
CM COSTART 3-char-name WAITINOWAIT nps (DO nps=x,y,z) 
CM 

CALL EVPOST( XPABGN(MNTRmid)) 
DO 2400'7 MNTRmid = 1, MNTRnms 

2400'7 CONTINUE 
IF ('WAIT' .EQ. 'WAIT') THEN 

DO 24009 MNTRmid = 1,MNTRnms 
CALL EVWAIT( XPAEND( MNTRmid ) ) 

CALL EVCLEAR( XPABGN( MNTRmid ) ) 
CALL EVCLEAR( XPAEND( MNTRmid ) ) 
CALL EVPOST( XPACNT( MNTRmid 

24009 CONTINUE 
DO 24011 MNTRmid = 1, MNTRnms 

24011 CONTINUE 

CM MMMMMMMMM CRAY MMMM COS MMMM EXPANSION MMMMMMMMMMMMM COSTART 
ENDIF 

20 CONTINUE 

CM COPROCESS XPA XPARl 4 4 
CM COBEGIN XPA 

CM COBEGIN $1$=3_char_name 
CONTINUE 

24045 CONTINUE 

CM MMMMMMMMM CRAY MMMM COS MMMM MACRO MMM 09-24-85 MMMMM COBEGIN 

CALL EVWAIT(XPABGN(XPApid(mid))) 
IF (XPASTP(XPApid(mid))) 

CALL EVCLEAR(XPACNT(XPApid(mid))) 
X GOTO 24046 

CM MMMMMMMMM CRAY MMMM COS MMMM EXPANSION MMMMMMMMMMMMM COBEGIN 
DO 30 I = (((2O/nps) * (pid-1)) + l), (2O/nps)*pid 

X(TIMESTEP,I) = A * I 
30 CONTINUE 

CM COEND XPA 

CM COEND $1$=3_char_name 
CM MMMMMMMMM CRAY MMMM COS MMMM MACRO MMM 09-24-85 MMMMMMM COEND 

CALL EVPOST( XPAEND(XPApid(mid))) 
CALL EVWAIT( XPACNT(XPApid(mid))) 
GOTO 24045 

24046 CONTINUE 
CM MMMMMMMMM CRAY MMMM COS MMMM EXPANSION MMMMMMMMMMMMMMM COEND 

(C) 
Fig. 14. Concluded 

(c) CoFortran precompiler generated code 
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